Algebra Tutorials!
Wednesday 24th of May
 Home Rotating a Parabola Multiplying Fractions Finding Factors Miscellaneous Equations Mixed Numbers and Improper Fractions Systems of Equations in Two Variables Literal Numbers Adding and Subtracting Polynomials Subtracting Integers Simplifying Complex Fractions Decimals and Fractions Multiplying Integers Logarithmic Functions Multiplying Monomials Mixed The Square of a Binomial Factoring Trinomials The Pythagorean Theorem Solving Radical Equations in One Variable Multiplying Binomials Using the FOIL Method Imaginary Numbers Solving Quadratic Equations Using the Quadratic Formula Solving Quadratic Equations Algebra Order of Operations Dividing Complex Numbers Polynomials The Appearance of a Polynomial Equation Standard Form of a Line Positive Integral Divisors Dividing Fractions Solving Linear Systems of Equations by Elimination Factoring Multiplying and Dividing Square Roots Functions and Graphs Dividing Polynomials Solving Rational Equations Numbers Use of Parentheses or Brackets (The Distributive Law) Multiplying and Dividing by Monomials Solving Quadratic Equations by Graphing Multiplying Decimals Use of Parentheses or Brackets (The Distributive Law) Simplifying Complex Fractions 1 Adding Fractions Simplifying Complex Fractions Solutions to Linear Equations in Two Variables Quadratic Expressions Completing Squares Dividing Radical Expressions Rise and Run Graphing Exponential Functions Multiplying by a Monomial The Cartesian Coordinate System Writing the Terms of a Polynomial in Descending Order Fractions Polynomials Quadratic Expressions Solving Inequalities Solving Rational Inequalities with a Sign Graph Solving Linear Equations Solving an Equation with Two Radical Terms Simplifying Rational Expressions Exponents Intercepts of a Line Completing the Square Order of Operations Factoring Trinomials Solving Linear Equations Solving Multi-Step Inequalities Solving Quadratic Equations Graphically and Algebraically Collecting Like Terms Solving Equations with Radicals and Exponents Percent of Change Powers of ten (Scientific Notation) Comparing Integers on a Number Line Solving Systems of Equations Using Substitution Factoring Out the Greatest Common Factor Families of Functions Monomial Factors Multiplying and Dividing Complex Numbers Properties of Exponents Multiplying Square Roots Radicals Adding or Subtracting Rational Expressions with Different Denominators Expressions with Variables as Exponents The Quadratic Formula Writing a Quadratic with Given Solutions Simplifying Square Roots Adding and Subtracting Square Roots Adding and Subtracting Rational Expressions Combining Like Radical Terms Solving Systems of Equations Using Substitution Dividing Polynomials Graphing Functions Product of a Sum and a Difference Solving First Degree Inequalities Solving Equations with Radicals and Exponents Roots and Powers Multiplying Numbers
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Families of Functions

Functions that are related in some way are often called a family.

For example, linear functions that have the same slope form a family. The graphs of these functions are parallel lines.

Letâ€™s look at the graphs of the functions:

f(x) = -2x

f(x) = -2x - 3

f(x) = -2x + 4

Here are some points that satisfy each of these functions:

 x f(x) = -2x f(x) = -2x - 3 f(x) = -2x + 4 -20 2 (-2, 4)(0, 0) (2, -4) (-2, 1)(0, -3) (2, -7) (-2, 8)(0, 4) (2, 0)

The graphs of the functions are shown. Notice the relationship between the three graphs.

â€¢ The top graph is f(x) = -2x.

â€¢ The second graph is f(x) = -2x - 3. Notice that for each input x, the output is 3 less than f(x) = -2x. This means that the graph of f(x) = -2x - 3 is the same as that of f(x)The graph of f(x) 2 3 x is shown. Line A and Line B are parallel to f(x). a. Find the equation of the function for Line A.x except that it is shifted down 3 units.

â€¢ The third graph is f(x) = -2x + 4. Notice that for each input x, the output is 4 more than f(x) = -2x. This means that the graph of f(x) = -2x + 4 is the same as that of f(x) = -2x except that it is shifted up 4 units.

This means that we could graph all three functions by first graphing f(x) = -2x. Then, we could draw the graph of f(x) = -2x - 3 by shifting the graph of f(x) = -2x down 3 units. Likewise, we could draw the graph of f(x) = -2x + 4 by shifting the graph of f(x) = -2x up 4 units.

Example

The graph of is shown. Line A and Line B are parallel to f(x).

a. Find the equation of the function for Line A.

b. Find the equation of the function for Line B.

Solution

a. Line A is the function shifted up 5 units. So, the function for Line A is

b. Line B is the function shifted down 4 units. So, the function for Line B is

 Copyrights © 2005-2017